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We compute the decay rates for stationary perturbations of Poiseuille flow in channels

and pipes. The decay rates are found by solving eigenvalue problems of ordinary differential

equations, where the eigenvalues give the rate of decay for the perturbation. A two-point

boundary value method is used to compute the eigenvalues yielding efficient and accurate

calculations. For the channel flow problem, the results are in agreement with previous

calculations, (e.g. 3), 14), 15], 17), 112)) 'however, the problem of determining the rate of

decay for a fluid motion in a pipe has not been considered before. We-proew that for the

Stokes problem in a pipe the eigenvalues, governing the rate of decay, are complex. We'

carry out computations for small and moderate Reynolds numbers, also high Reynolds

number computations were done to show the effectiveness of this method.
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COMPUTATION OF THE EIGENVALUES FOR PERTURBATIONS OF

POISEUILLE FLOW USING A TWO-POINT BOUNDARY VALUE METHOD

Gerardo A. Ache*

1. Introductionl

In this paper we are concerned with the eigen-alue problem which governs the rate

of decay for a stationary perturbation of Poiseuille flow. We consider two-dimensional "

viscous motions in channels and axi-symmetric viscous flow in pipes. We assume that i

the difference between the base flow and Poiseuille flow decays exponentially downstream

(or upstream). It is then possible to seek solutions to the Navier-Stokes equations, far

downstream (or upstream), that are a perturbation to the Poiseuille profile and that decay

exponentially in the axial direction. The equations can then be linearized yielding an

ordinary differential eigenvalue system where the eigenvalues determine the rate of decay

for the stationary perturbation.

By use of the stream function formulation, it is possible to reduce the eigenvalue sys-

tem to a single fourth-order differential eigenvalue equation for the decay of the stationary

perturbation. In the two-dimensional case this differential equation is very similar to the

Orr-Sommerfeld stability equation. Results regarding the computation of these eigen-

values, in the case of channel flow, have been presented previously, e.g. [31,14],15],[7],i12!,

however when the fluid motion is considered axially symmetric, the problem of determining

the rate of decay for the stationary perturbation has not been considered before.

*Facultad de Ciencias, Universidad Central de Venezuela-Caracas.
Mail address: Apdo 4311, Carmelitas. Caracas 1010, Venezuela.

Supported by the U. S. Army Research Office under Contract No. DAAL03-87-K-0028.
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To compute the eigenvalues several methods have been used, for example, a spectral

method by Bramley j3], and Bramley and Dennis [4, -in initial value method by Bramley

and Dennis [5], a singular perturbation method by Wilson 7121, etc. All of these works have

dealt with the two-dimensional channel flow problem, and with the exception of Bramley [3]

all of them have considered the Navier-Stokes equations in the stream function formulation.

The work of Bramley and Dennis 14' appears to be the most complete among all others

mentioned above. They used an extension of the Orszag's spectral method presented in

" ,19]. In [31 Bramley used the same method to compute the eigenvalues using the primitive

formulation for the Navier-Stokes equations, i.e., he used the velocity field and the pressure

instead of the stream function. However, the results of Bramley 3] are not in complete

agreement with [4]. This disagreement may be the result of using the wrong number of

boundary conditions. There are two disadvantages reported in [41 with respect to spectral

methods, these are the computation of spurious eigenvalues and the loss of accuracy for

high Reynolds numbers computations, especially for eigenvalues with negative real part.

In [5] Bramley and Dennis used an initial value method to compute the eigenvalues. They

said that using this method it is possible to overcome some of the difficulties of spectral

method. However, their method computes only eigenvalues, and not eigenfunctions, and

only one at a time.

.1

In this paper we compute the eigenvalues for a perturbation of Poiseuille flow, in a

channel and a pipe, using a more accurate and efficient method. This method can be

described in two steps, first, we transform the eigenvalue problem into an equivalent two-

point boundary value system, then we numerically solve this system using the two-point2]



boundary value solver DVCPR from the IMSL library. For the two-dimensional problem

our results are in full agreement with the previous work of Bramley and Dennis [4], for small

and moderate Reynolds numbers, and with the asymptotic prediction of Wilson [121, for

eigenvalues approaching zero at high Reynolds numbers. The numerical results presented

in this paper show the efficiency of the calculations and the superiority of our method with

respect to the other methods mentioned above. These eigenvalues are important for the

derivation of boundary conditions, this problem was considered in [1'.

2. Channel Flow

Given a semi-infinite channel, the incompressible Navier-Stokes equations are given

by

9u au ap 1
u- + v- + -= R (2.a)
9v av a= R

U- V op . _ =1V2 (2. 1b)
09X ay ' ay R

au av+  = (2.c)
ax ay

with boundary conditions

u =v =0 at y= ±1 (2.1d)

u =F,(y) , v=F 2(y) at x=0 , (2.1e)

where F, is a profile satisfying F,(zl) 0. Finally we have the regularity condition

(u,v) - 0 (l,O) as x -. o . (2.f)

Here R represents the Reynolds number, V' 2 
-02, Ox a2 19y 2, and ti = 3(1 - y2) is the

Poiseuille parabolic profile.

3
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Since we are only interested in solutions of this system which decay exponentially, far

downstream we seek an asymptotic solution to (2.1) ii the form

3

u (x,y) 3 (1 - y2 ) + W,(y) exp(-Ax) , (2.2a)
2

v (X,y) = W 2(y)exp(-Ax) , (2.2b)

p(x,y) = -3R-x+R-(y)exp(-Ax) -- , (2.2c)

where C is an arbitrary constant.

Substituting these expressions in equations (2.1a) to (2.1c), and neglecting nonlinear

terms, we have that (A.,W 1,W 2 ,q) satisfies the following eigenvalue system of )rdinary

differential equations,

d =, - R{(1 - y2)AWI - 3yW 2} - Aq- \ 211 1  (2.3a)
dy 2  2

dW2 (2.3b)dy

dq 3 dWjd _ -R(1 _ y 2 )A A' 2 -- A2 " 2 - A (2.3c)
dy 2 dy

and boundary conditions

W ,(±1) 14 2() = 0 (2.3d)

We are interested in solving this two-point boundary value system to determine the

rate of decay A. For x large (i.e.. downstream) the solution to (2.1) may be represented by

3
U(x,y) =(1 _ y 2) Tj Z ,,,(y) exp(-A,x) , (2.4a)

v(X, = 'W_, 1 (y)exp(-A ~x) (2.4b)

4



and

q(x,y) - -3R- x + R-' E n(y)exp(-AnX) + C , (2.4c)
n

Re(An) <5 Re(An+,) .(2.4d)

The sum in (2.4a) to (2.4c) is taken over all the eigenvalues with positive real part (the
.',

eigenvalues with negative real part can be used to construct an asymptotic solution to (2.1) %
*5

in a semi-infinite channel on the negative x-axis) and (WIn, W2,n, 4, An) being a solution

to the system (2.3).

We may eliminate the perturbed pressure 4 from the system (2.3) by differentiating

(2.3a) with respect to y, multiplying equation (2.3a) by -A, adding the resulting expres-

sions and using (2.3b), then the system (2.3) is reduced into a single fourth-order differen- r
,

tial equation in W2 and A very similar to the Orr-Sommerfeld equation (for simplicity we

replace W2 by W)

d4 W 2 d2W A4 R3.  d2W
-4- 2A -_ A41 + AR{3(1 - Y2)(d A2W) + 3W} = 0 (2.5a)

dy 4  dy2  2 dy 2

and boundary conditions

dWV
W =- =0 at y =±1 (2.5b)dy

We solved this equation in order to compare our method of solution with previous

computations. Equation (2.5) is associated with the stream function formulation of the

Navier-Stokes equations (see e.g. 4;).

When the Reynolds number R is equal to zero we may find an explicit solution to (2.5)

and therefore to (2.3). This solution is given in terms of the Papkovitch-Fad'Ie functions

5
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for the biharmonic equation in a semi-infinite strip . For R 0 equation (2.5) becomes

d4 W 2  d2 V + 0 (2.6

dy 4  dy 2

and boundary conditions (2.5b). This equation is associated with the biharmonic equation

when solutions of the form w(x,y) = W(y) exp(-Ax) are sought. There are two types of

solutions for (2.6), one even and the other odd, which are given by

W '(y) = (y-- 1) sin(Ae(y + 1)) + (y + 1) sin(Ae(y - 1)) (2.7a)

and

W 0(y) = (y - 1) sin(AO(y - 1)) - (y -- 1) sin(A0 (y - 1)) , (2.76)

respectively. To satisfy the boundary conditions (2.5b) we need that the eigenvalues A

and A' satisfy the following transcendental equations.,

sin (2A-) 2A= 0 (2.8a)

and

sin (2A) - 2A' 0 (2.8b)

respectively. We notice that if A is an eigenvalue satisfying (2.8) so is -A and also -A,

also the function

W(X,Y) = Can1V"(Y)exp(-A'.) .(2.9)

n

where the sum is taken over the eigenvalues with positive real part. satisfies the biharmonic

equation in a semi-infinite strip with transversal boundary conditions u, = du',y = 0

In section 4 we discuss a method to solve the eigenvalue problems (2.3) and (2.5),

where the solution to the Stokes problem (2.6) plays an important role. Also in section 5

6
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we present numerical results involving the computation of these eigenvalues for arbitrary

Reynolds numbers.

3. Axially Symmetric Flow

In this section we consider the incompressible Navier-Stokes equations in cylindrical

coordinates and dimensionless form, set in a semi-infinite pipe. These equations can be

written as,

UO- + V O p+ O (V _ , (3.1a)
o~ z ar R r

Uv dv + Op _ V (3.1b)49r V 9z oz -R
a av

(ru) + = 0 (3.1c)

and boundary conditions

u =v =0 at r =1 . (3.1d)

Since the fluid motion is symmetric the conditions at the center line are

dv
u - 0 at r=O , (3.1e)

O~r

we also specify the entry condition

u = F,(r) ,v F2 (r) at z = 0 (3.lf)

finally we have the regularity condition.

(u,v) -. (0,f) as z -- oc (3.1g)

Here V2 = 1/r 0/Or (rd/Or ) -- 02/:2 , and i, 1 -r 2 .

7 U
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Similar to the channel flow problem we seek an asymptotic solution to (3.1) in the

form,

u(r,z) IW,(r)exp(-Az) (3.2a)

v (r, z) r 1 - r W2(r) exp(-Az) , (3.2b)

and

p(r,z) = -4R-'z - Rl '(r) exp(-Az) + C , (3.2c)

with C an arbitrary constant.

Substituting these expressions in (3.1a) to (3.1c), and neglecting nonlinear terms, we

obtain an eigenvalue system in W, , W2, . and A similar to (2.3), i.e.

dW - A142  , (3.3a)
dr r

d 2 W2 2 1 dWd2 W2 - -R{2rW,- + A(1 - r 2)W 2 } A d 2
2 - Aq (3.3b)dr2  r dr"'S -A ,(.b

d dW 2
- =-R(1 - r 2 )AW1 - A + A2 1', (3.3c)

dr dr

with boundary conditions,

dW2
W ,(0) dr ( 0) 0 and W1,(1) W 2 (1) 0 . (3.3d)

dr

By solving this system we may represent the solution to (2.1). for . far downstream.

in the same way as for the channel flow problem i.e.. by expressions similar to (2.4a) to

(2.4d).

Similar to the channel flow problem we solved the system (3.3) numerically, using the

solution to the system for R 0 (the Stokes problem). These solutions may be found as



follows. When R 0 the system (3.3) becomes,

d _AV 2 _ W , (3.4a)

dr r

dW 2  _ 1 d(3.4b)

dr 2  r dr P

dq_ AdW2
dr A A2IV , (3.4c)

and boundary conditions (3.3d).

To find an explicit solution to this system differentiate (3.4c) with respect to r, mul-

tiply (3.4a) by ) 2 and (3.4b) by A , then add the resulting expressions and using (3.4c) we

obtain the following differential equation in q,

d 2 + 1 + A2 0 (3.5)
dr 2  r dr

This equation has the particular solution,

q(r) Jo(Ar) , (3.6)

where JO is the Bessel function of first kind and order zero. This is the only solution, up

to a multiplicative constant, which is finite when r is equal to zero. Substituting q(r) in

(3.4b) we obtain the following differential equation in 11'2,

d d2W2 1 6112Sdr' r A d W 2 1'2  -AJ0(Ar) , (3.7a)
dr 2  r dr

with boundary conditions.

dr

This two-point boundary value problem has the following solution.

W 2 (r) bJo(Ar) - r r(Ar) , (3.8)21

9_
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where b is a constant to be determined by 1' 2 (l) 0. Using (3.4a) then IV is given as,

W 1(r) = -[1rJo(Ar) - (1 - Ab)Jl(Ar). (3.9)

Since the solutions (3.8) and (3.9) need to satisfy the boundary conditions (3.3d) we have

that,

VA
AWl(1) A Jo(A) - (1 - A,)J,(A) 0 , (3.10a)

2

and

W 2(1) bJ0 (() - 2J,(A) 0 . (3.10b)

By eliminating b from these two equations we obtain,

1 + - 2 Jo(A) - 1  031

2A 
2 2 (A)I5

To solve this equation we observe that (3.11) can be transformed, after some algebraic

manipulations. into the following non-linear equation

J I(A)J 0 (A) - A(j1(A) j(A)) .(3.12)

2

Lemma 3.1

All non-trivial solutions to the equation (3.12), that is those with A 0 .are complex.

Proof

We make use of the following integral formula involving the Bessel functions.

fJ(x)dr - 12 2 (3.13);: f zJ (x~~~~dz =x (J }(x) .. J (x)) - xJo(z)Jj(i) .(.3 .=

,, 10 .



This formula is obtained by integrating by parts Lommel's integral formula with a 1

(see [2], p 10). Then assuming that some A satisfying (3.12) is real we get the contradiction

that
fA () 1')j2A j()

dx (Jo() -- J()))- AJ0 (A),(A) 0
0 J( 2

where we have assumed, without loss of generality, that A > 0 . This contradiction proves

the lemma.

It is known that the Bessel functions have the following asymptotic representations,

2 7r

J0(A) ()1'/2{cos(A - -) -r 1(A)} (3.14a)
7 A 4

and

J 1 (A) (2 ) 1/2{sin(A - 7') E*2 (A)} (3.14b)
rA 4

where Ej(A),E 2(A) can be regarded as small order terms for Re(A) large. Substituting

these asymptotic expressions in (3.12), and neglecting EI(A) and E2 (A), the A's can be

approximated by solutions of the following transcendental equation,

cos (2A) + =0. (3.15)

'* Solutions of this equation can be used as initial iterates for a Newton method to obtain

the roots of (3.12). We will present the detail of the computation in section 5.

Similar to the channel flow problem we used the solution to the Stokes problem to

numerically solve the system (3.3) for arbitrary Reynolds numbers.

4. Method of Solution

In this section we discuss a method to solve the two-point boundary value problems for

the systems (2.3), (3.3) and equation (2.5) and determine their eigenvalues. The method

N %%It2



can be described as follows, first the eigenvalue problem is transformed into an equivalent -,

two-point boundary value first-order system of the form, I
?,'= (, ,Rt)Z , a < t < b,(41)

A A ' , t (4. 1ba)
P a

with boundary conditions

BaZ(a) - B Z(b) 0 . (4.1c)

Zk(b) 1 (4. 1 d)

for some k 1 < k < N . Here Z = (zi,z2 ,." ,zN) and A, B, Bb are N x N matrices.

The prime in (4.1a) indicates derivatives with respect to t. The condition (4.1d) has to

be chosen in a way that is not in conflict with (4.1c). In the case of systems (2.3), (3.3)

and equation (2.5) we used for condition (4.1d) U"(1) =1. 11"(1) = 1, and W"(1) = 1.

respectively. To numerically solve the system (4.1) we used the two-point boundary value ,s.

system code DVCPR from the IMSL library (this code is also known as PASVA3), it is

a standard solver for first-order system of ordinary differential equations with conditions

at two end points. It uses a variable step, with an automatic criterion to select a non-

uniform grid. and a variable order of accuracy, with an excellent correspondence between V.

the requested tolerance (tol) and the actual global error in the numerical solution, (see e%

[10'). Since the systems considered are non-linear we used as initial iterate in PASVA3 the 0

solution to the corresponding Stokes problem (R 0) , which is known and for which the

boundary conditions are satisfied, to generate solutions for arbitrary Reynolds numbers.

This procedure is called continuation. The disadvantages of this method are that we have

12,1



to compute the eigenvalues one at a time, however the eigenvalues are computed together

with their eigenfunctions. Also we can not compute the solution at a critical Reynolds

number, i.e. a Reynolds number for which the solution to the system is not isolated,

however it is possible to compute solutions for Reynolds numbers close to a critical value.

By using this method we avoid the computation of spurious eigenvalues and also for high

Reynolds numbers the solution can be computed in a very accurate manner.

5. Numerical Results

We now present some numerical results concerning the eigenvalue problems described

in §2 and §3. For the channel flow problem our results are in full agreement with the

previous computation of Bramley and Dennis [4], also we obtain the same answer by

solving the system (4.1) corresponding to the primitive formulation, i.e., equations (2.3),

and the system (4.1) corresponding to the stream function formulation, i.e., equation (2.5).

We present about the same number of results as in 4[. We present our results graph-

ically concerning the behavior of these eigenvalues in the complex plane. We regard these

eigenvalues as a function of Reynolds numbers in the form A(R) = a(R) + iO(R) then we

plotted the pairs (a(R),3(R)) in the A plane. We computed even and odd branches of

eigenvalues and eigenvalues for axi-symmetric flow. Note that for the axi-symmetric flow

there is no associated parity, such as even or odd, thus when we refer to an even or odd

solution it means an even or odd solution to the channel problem.

For the channel flow problem we have found that these eigenvalues.behave as follows

(see figures 1.1a and 1.1b). Let (Ak(O),Zk(t)) be an eigenpair solution for R = 0 where

Re(Ak) ;< Re(Ak±+) , k 1,2,-.. For 0 < R < RC, o (Ak(R).Zk(t)) remains

13
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complex, its conjugate also being an eigenpair solution. At R R,,,o this complex solution

and its conjugate coalesce on the real axis and then, for R larger than RC, 0 they split

into two branches of real solutions, one with increasing eigenvalues and the other with

decreasing eigenvalues. For solutions with positive eigenvalues the increasing real solution

(Ak(R),Z(t)) coalesces with the decreasing real solution (Akl (R),Zk+l(t)) of the next

branch at R = RA then, for larger values of R these two solutions split into a complexC,l

solution and its conjugate and again they remain complex for R I < R < R 2 , then

at R = RC,2 the complex solution and its conjugate again coalesce on the real axis and

the cycle is repeated. Notice that R k, m = 1,2,--- , are the critical Reynolds numbers.

There is an exception to this cycling phenomenon the first even branch of solution remains

complex and approaches zero as R increases. Also the first real branch of even and odd

decreasing eigenvalues approaches zero as R increases. None of the previous researchers

have reported the second type of critical Reynolds number at which two real solutions

coalesce and split into a complex solution and its conjugate. Only Wilson 121 pointed out

that the positive increasing real eigenvalues approach a fixed value on the real axis. As can

be seen from Figures 1.1a and 1.1b the cycles of the eigenvalues appear to be converging

to a value on the real axis.

For eigenvalues with negative real part the situation is different, solutions with eigen-

values which decrease in magnitude either approach zero as R increases, but in a much

slower rate than solutions with positive real eigenvalues, or they approach a fixed value.

In these cases, the real eigenvalues increase or decrease very slowly that for the range of

:-!
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the Reynolds number for which we made the computations, we did not observe the coa-

lescence of real eigenvalues with negative real part.

We have found that for the axi-symmetric problem the solutions behave in the same

manner as the odd solutions for the channel problem. That is, the solution are initia!ly

complex, the conjugate pairs coalesce on the real axis, the real solutions, with positive

eigenvalues, coalesce, becoming complex, etc.

Figures 1.1a and 1.1b show the eigenvalues with positive real part in the A plane for

the first and second branches of even and odd eigenvalues, respectively, without including

the complex conjugate. Also we do not include graphical displays for the axi-symmetric

case since it is similar to the odd case. These graphics have been obtained for some

range of R which are different for each curve. For the even eigenvalues the first curve,

corresponding to the complex branch, was made for 0 < R < 106 while the second branch

for 0 < R < 100 . For odd eigenvalues the first curve corresponds to 0 < R < 90 . and the

second for 0 < R _- 100 . These differences arise because we wanted to illustrate the cycles

for each branch. All the computations were done on the VAX 11/780 at the Mathematics

Research Center at the University of Wisconsin-Madison.

Similar to '4' we present several tables which include the computation involving the

eigenvalues. For R 0 in the channel case. the eigenvalues may be computed by solving

the transcendental equations (2.8a) and (2.8b) . Results concerning the solutions of these

equations can be found in i6' and '11. However, for the axi-symmetric case since there are

not previous results we may start by computing the first few eigenvalues, with positive real

part, which correspond to solutions of equation (3.12). As we said in §3 to solve equation

.... ..- ~ .. . . . . . :
- ° • " • • " • " " * # • • " " " . .•.. . . . . . . . . . ..". .'"". .."" ."."" . . . . . .* 

" ° " °
•

° ° °- •- %
..
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(3.12) we used solutions to (3.15) as initial iterates for the Newton method. At the same

time to solve (3.15) we used the Newton method and as initial iterates the expressions,

log(2-1) i
A, ---n = ". - log(2">,) , (5.2)

4 -y -2

with -y, = = ,n 1,2-.-, since these expressions are asymptotic solutions ton 2

(3.15). In each case we have found that only two or three iterations were needed for the

Newton method to find solutions to (3.12) and (3.15) with six decimal places of accuracy.

The first several solution to the equation (3.12) are given in Table 1. Also we are including

only those tables for which we have obtained results that are not reported in 41 (the

complete set of tables regarding all the numerical results can be found in .1'), for example

in Tables 2, 3, 4, 5, 6 we show real and complex eigenvalues for the axi-symmetric case.

in Tables 8, 9 we give the critical Reynolds numbers, and eigenvalues. corresponding to

graphics (1.1a) and (1.1b), in Tables 10, 11 we show the eigenvalues for high Reynolds

number calculations.

As pointed out in '41, for large values of R the eigenvalues which have large modulus

tend to be less accurate. Since the complex eigenvalues with negative real part have

larger modulus than those with positive real part they may be a sensitive quantity in

the computation. We computed the first branch of odd complex eigenvalues for R > 10

with different tolerances (the tolerance tol is a parameter in PASVA3 that controls the

grow of the estimate errors). WVe have found that the accuracy of the eigenvalues increased

considerably while we decreased the tolerance, e.g., for tol = 10- 6 and 10 - 6 the eigenvalues

agree up to six decimal places for Reynolds numbers in the range 10 < R < 50 and they

have at least three decimals places in common for R > 50 . while for tol = 10 3 and

h .16



Irv - -V.. '.

r
10-10 the eigenvalues agree up to six decimal places for Reynolds numbers in the range

10 < R < 10000 . We present the corresponding results in Table 7.

6. Eigenvalues at Critical Reynolds Numbers

As we pointed out before this method fails to compute eigenvalues at critical Reynolds

numbers. In [4' Bramley and Dennis computed some eigenvalues, that they suggested

occur at critical Reynolds numbers, e.g. at R = 6.3 they computed the eigenvalue A - 6.0,

which corresponds to the first critical eigenvalues of the second odd branch (see figure

1.1b). We have found, according to our computation, that R = 6.3 is not exactly a critical

Reynolds number but it is very close to it, i.e., we computed two eigenvalues for that R, one

corresponding to the increasing solution with A = 6.01267 (which. apparently agrees with

the value given by Bramley and Dennis) and the other corresponding to the decreasing

solution i.e. A = 5.85346. A similar situation happens for a critical eigenvalue reported

in i7 by Gillis and Brandt. They computed the eigenvalue A ;- 2.632, presumably a

critical one, at R = 8.461 . We compute eigenvalues A = 2.62085 and A 2.63875 at that

Reynolds number. We believe that it is difficult to determine exactly a critical Reynolds

number and its critical eigenvalue. Here we introduce a device, which may be useful, to

compute better approximations to critical Reynolds numbers and their eigenvalues. First

-p

we assume that the eigenvalues, near a critical Reynolds number, may be represented by

the following formula,

A , R -- R,(6.1)
U p,

where R, is the critical Reynolds number, A, the critical eigenvalue and 7 is a constant.

For Reynolds numbers RI,R 2 ,R 3 , near R, we can rewrite (6.1). after some algebraic
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manipulation, as

R= R, + A(A, - A ) + B(A- A1) 2  (6.2)

with A and B given by A (1/d)2 and B = (1/)2(2,\ - 2A,) respectively, and i 2,3.

Then, using the values of R,,A, , we solved the system (6.2) in terms of A. B . \We can

compute Ak by the formula

A
X: XI -2B (6.3)

while R. is obtained using (6.1). This approach seems to work well, whenever the eigen-

values are close to A,. In Tables 8 and 9 we show all the critical eigenvalues, corresponding

to Figures 1.1a and 1.1b, computed by this approach.

7. Asymptotic Behavior for Large R

It is interesting to see the behavior of these eigenvalues for high Reynolds numbers. By

high Reynolds number we mean that the system (4.1) becomes a stiff system of ordinary

differential equations. In '12', Wilson developed a theory based on a singular perturbation

analysis to investigate these eigenvalues. He considered equation (2.5), corresponding to

a channel flow problem in the stream function formulation. For high Reynolds numbers

Wilson found that the eigenvalues approaching zero downstream fell in two categories,

one in which the eigenvalues approached zero as O(R - 1) and in the other as O(R-L)

From Tables 5 we see that the eigenvalues behaving like O(R - 1 ) correspond to positive

real decreasing eigenvalues, which according to Wilson, these eigenvalues may be written

as A AR -1  O(R 3 ) with A, being a constant. By neglecting smaller terms we have

that A0  A AR . Then it is possible to use the numerical data to compute A0 . We did that

18
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for R 1 l0 s and the Ao's that we found agree with those given by Wilson, (see [121, Table

3).

The second type of eigenvalues approaching zero downstream, according to our compu-

tation, are the even complex eigenvalues (first branch). By assuming that these eigenvalues

can be written as

A= R - 7 -r--. ,(7.1)

we have that for R large enough, neglecting smaller perturbations, we may compute the

Ao's , using the numerical data, by A0 z AR . In Table 10 we present the corresponding

results.

Notice that A0 tends to a constant as R increases, it seems to be that R has to be

quite large before neglecting any smaller perturbation in the asymptotic expression for A.

Unfortunately, Wilson did not mention how to obtain the smaller order terms in (7.1).

Using the numerical data we may attempt to compute the second lower order term in (7.1)

by assuming that A can be expanded as

A =bR- -,cR -  . (7.2)

with b. c, d constants to be determined. We have then that for four consecutive eigenvalues

A\1,A 2 ,A 3 and A 4 at Reynolds numbers of the form Rk I ORk _ the following formuia -.

10- 2- a3 Re(c)O0d(l -  -10-)Rj - 
. (7.3a)

and

10- 3- 24 dR(c)lO2dlO - 10 )R - (7.3b)

I 49 ,5



where Ak =k + ip1k, i.e., we have that d is given by

d = log 10 2 - log 10 (7.4)
10 7Q - L

while b can be determined, using again (7.2), by

b = 10-dA. (7.5)
( 1 0

- d - 10- 1

and c is determined using (7.2) with A replaced by A4 .

We found the following values for b,c and d, b = 1.6400-0.7813i, c = -0.1655-0.0435i

and d = 0.34676. We used Ak corresponding to Rk = 103 , 104, 105, 106. Therefore by

substituting these values in (7.2) it is possible to obtain a better asymptotic prediction.

Notice that d is approximately j i.e., the eigenvalues behave, approximately, as

A = (1.64 + 0.7813i)R -  O(R-). (7.5)

In Table 11 we show a comparation between the numerical results of the eigenvalue

calculations and the asymptotic results using formula (7.2). The agreement is satisfactory.

notice that for the Reynolds numbers used to derive formula (7.2) the agreements are

better.

8. Conclusion

The eigenvalues governing the rate of decay of perturbations of Poiseuille flow have

been studied. The procedure to compute the eigenvalues is based upon expressing the

eigenvalue system as a two-point boundary value problem. The eigenvalues are computed

one at a time jointly with the eigenfunctions, the results presented are in agreement with

previous computations 4' and !12'. For high Reynolds numbers we show that the first
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branch of even eigenvalues has an asymptotic representation of the form (7.5). We think

that our procedure is simpler, more direct and efficient than previous methods and can

be used with relative ease on a computer. Due to the high accuracy obtained on using

this method we strongly recommend it for computations involving eigenvalue systems of

ordinary differential equations.
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TABLE I

Solutions to equation (3.12)

4.46630- 1.4674 7i
7.69410- 1.72697i

10.87457- 1.89494i
14.03889-2.02006i
17.19557-2.11995i
20.34797-2.20312i
23.49772-2.27441i
26.64572 -. 3136781
29.79248-2.39223i
32.93833-2.44214i

TABLE 2

Axi-symetric complex eigenvalues with positive real part for 0 < R < 100

R A A A
R[

0 4.46620-1.46747i 7.69410-1.72697i 10.87457-1.89494i
1 4.29200-1.42646i 7.52551-1.69447i 10.70765- 1.86725i
5 3.76255-1.06197i 6.95388-1.31088i 10.11519-1.47824i

15 4.24793-0.78668i 7.31772-1.10920i 10.40317-1.28557i
25 3.70720-0.50937i 7. 77552-0.31462i 10.82173-0.95050i
50 3.79197-0.45240i 7.44769-0.69724i 10.31659-0.90353i

100 4.17041-0.27261i 7.48688-0.33362i 10.22035-0.64556i
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TABLE 3

Complex eigenvalues with smallest positive'real part for R > 100

R Ae(even) A (odd) A(axi-symm)

250 2.78306-0.27633i 0.72120-0.37930i 3.80091-0.06650i
500 2.71137-0.152641 0.65637-0,33642i 3.97900-0.17319i

1000 2.70753-0.15583i 0.59650-0.29956i 3.86180-0.15698i
2500 2.67659-0.12999i 0.38104-0.18322i 3.50706-0.09679i
5000 2.59490--0.08062i 0.34571-0,16572i

TABLE 4

Axi-svmmetric complex eigenvalues with negative real part for 0 < R < 10

R A A A

0.25 -4.5126-1.4738i -7.7378-1.7309i -10.9174-1.8976i
0.50 -4.5601-1.4784i -7.7821-1.7331i -10.9607-1.8986i
1.00 -4.6584-1.4823i -7.8727-1.73181 -11.0486- 1.8S9491
2.50 -4.9823- 1.4417i -8.1593-1.6744i -11.3231 - 1.31 Ii
5.00 -5.6481-1.0772i -8.6844-1.24201 -11.8148-1.43381

10.00 -8.3161-1.5370i -11.4575-1.42771 -14.4887- 1.5590i
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TABLE 5

Real positive axi-symmetric eigenvalues for R < 5000

R A A A A

10 2.84882
25 1.23820
50 0.63541 1.86985

100 0.32000 0.95032 1.89301 3.21182
250 0.12827 0.38230 0.76379 1.27228 1.90837
500 0.06415 0.19134 0.38250 0.63760 0.95652

1000 0.03208 0.09568 0.19133 0.31900 0.47867
5000 0.00642 0.01914 0.03827 0.06381 0.09576

TABLE 6

Real negative axi-symmetric eigenvalues for R < 105

R A A A

10 -4.94606
25 -4.49291 -8.13980 -12.42763
50 -4.31816 -7.77838 -11.24747

100 -4.19980 -7.57708 -10.92172
250 -4.09219 -7.40731 -10.68291

500 -4.03427 -7.31888 -10.56491
1000 -3.99010 -7.25228 -10.47775
2500 -3.94679 -7.18740 -10.39379
5000 -3.92235 -7.15090 -10.34684

10000 -3.90323 -7.12238 -10.31023
50000 -3.87316 -7.07752 -10.25277
100000 -3.86452 -7.06463 -10.23627
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TABLE 7

Odd complex eigenvalues with negativ7 real part for R > 10

R A0 (tol=10 - G) A" (tol> 10")

10 -10.458682-1.694815i -10.458682-1.694815i
25 -16.941646-2.763071i -16.941646-2.763071i
50 -24.288883-4.070337i -24.288883-4.070337i
100 -34.664217-5.9667S9i -34.664089-5.966881i
250 -55.230448-9.710819 -55.230451-9.710823i
500 -113.589146-11.159176i -113.589146-11.159176i

1000 -111.168228-19.879302i -111.168232-19.879303i
2500 -176.178035-31.692081i -176.178035-31.692081i
5000 -362.979226-36.296213i -362.979211-36.296142i

10000 -352.923824-63.768959i -352.923830-63.768960i

TABLE 8

Critical Reynolds numbers and critical odd eigenvalues

i k

8.4606 2.63126 6.2983 5.89598
9.1576 3.42632 6.8691 6.97998

25.6282 2.67267 17.1490 5.91199
26.3405 3.1.5830 18.0316 6.76558
50.8847 2.70372 31.6603 5.95620
51.3489 2.95271 32.6501 6.63307
84.1917 2.74161 49.3053 6.00915

50.7706 6.51354

71.4975 6.19109

29

" .m :,?%-' ..- " .-- . . ,% . ... . -',. ,-, ." '.-..'.'.-.- 4'-"'-' 4" -" "" -: "-"" " "-- : "- "- " "-"



TABLE 9

Critical Reynolds numbers and critical even eigenvalues

R ,O AC

6.8846 4.23405
7.5805 5.25272

19.5660 4.29246

20.5465 5.04126

37.1756 4.36997
38.2524 4.87873

59.8274 4.37883
60.7830 4.81713
87.3756 4.38935

TABLE 10

Even complex eigenvalues for high Reynolds numbers

R A AO

1000 0.59650-0.29956i 1.60023-0.80362i
10000 0.43318-0.20964i 1.61472-0.78146i

100000 I 0.31358-0.15003i 1.62420-0.77709i
1000000 0.22651-0.10819i 1.63013-0.77865i

?'p3
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TABLE 11

Numerical vs Asymptotic Eigenvalues at high Reynolds numbers

R At (numer) A' (asympt)

1000 0.59650-0.29956i 0.59625-0.28725i
10000 0.43317-0.20964i 0.43317-0.20780i
50000 0.34571-0.16572i 0.34572-0.16552i

100000 0.31358-0.15003i 0.31358-0.15004i
500000 0.24986-0.11934i 0.24986-0.11950i
750000 0.23592-0.11269i 0.23592-0.11271i

1000000 0.22651-0.108!9i 0.22651-0.10819i
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